ccv

A Modern Computer Vision Library

View the Project on GitHub liuliu/ccv

lib/ccv_scd.c

ccv_scd_classifier_cascade_new

ccv_scd_classifier_cascade_new(ccv_array_t *posfiles, ccv_array_t *hard_mine, int negative_count, const char *filename, ccv_scd_train_param_t params)

Create a new SCD classifier cascade from given positive examples and background images. This function has a hard dependency on GSL.

return: The trained SCD classifier cascade.

ccv_scd_train_param_t

ccv_scd_classifier_cascade_write

void ccv_scd_classifier_cascade_write(ccv_scd_classifier_cascade_t *cascade, const char *filename)

Write SCD classifier cascade to a file.

ccv_scd_classifier_cascade_read

ccv_scd_classifier_cascade_read(const char *filename)

Read SCD classifier cascade from file.

return: A classifier cascade, 0 returned if no valid classifier cascade available.

ccv_scd_classifier_cascade_free

void ccv_scd_classifier_cascade_free(ccv_scd_classifier_cascade_t *cascade)

Free up the memory of SCD classifier cascade.

ccv_scd

void ccv_scd(ccv_dense_matrix_t *a, ccv_dense_matrix_t **b, int type)

Generate 8-channel output matrix which extract SURF features (dx, dy, |dx|, |dy|, du, dv, |du|, |dv|) for input. If input is multi-channel matrix (such as RGB), will pick the strongest responses among these channels.

ccv_scd_detect_objects

ccv_scd_detect_objects(ccv_dense_matrix_t *a, ccv_scd_classifier_cascade_t **cascades, int count, ccv_scd_param_t params)

Using a SCD classifier cascade to detect objects in a given image. If you have several classifier cascades, it is better to use them in one method call. In this way, ccv will try to optimize the overall performance.

return: A ccv_array_t of ccv_comp_t with detection results.

ccv_scd_param_t

‹  back 

comments powered by Disqus