A Modern Computer Vision Library

View the Project on GitHub liuliu/ccv



void ccv_minimize(ccv_dense_matrix_t *x, int length, double red, ccv_minimize_f func, ccv_minimize_param_t params, void *data)

Linear-search to minimize function with partial derivatives. It is formed after minimize.m.



void ccv_filter(ccv_dense_matrix_t *a, ccv_dense_matrix_t *b, ccv_dense_matrix_t **d, int type, int padding_pattern)

Convolve on dense matrix a with dense matrix b. This function has a soft dependency on FFTW3. If no FFTW3 exists, ccv will use KissFFT shipped with it. FFTW3 is about 35% faster than KissFFT.


void ccv_filter_kernel(ccv_dense_matrix_t *x, ccv_filter_kernel_f func, void *data)

Fill a given dense matrix with a kernel function.


void ccv_distance_transform(ccv_dense_matrix_t *a, ccv_dense_matrix_t **b, int type, ccv_dense_matrix_t **x, int x_type, ccv_dense_matrix_t **y, int y_type, double dx, double dy, double dxx, double dyy, int flag)

Distance transform. The current implementation follows Distance Transforms of Sampled Functions. The dynamic programming technique has O(n) time complexity.

‹  back 

comments powered by Disqus